
VARIATIONS AND GENERALIZATIONS OF THE DEHN FUNCTION

WENHAO WANG

0. Notations

Here are some notations we will use throughout this survey.

(1) For group elements g, h ∈ G, gh = h−1gh. And [g, h] = g−1h−1gh.
(2) LetX be a finite set, then F (X) is the free group generated byX. It is also represents

all reduced words in alphabet X∪X−1. The length function | · |X : F (X) → N maps a
reduced word to its length. The set of words of the alphabet X (no inverses included)
is denoted by X∗.

1. The Dehn function

Let G be a finitely presented group. Consider a finite presentation of G,

P = 〈x1, . . . , xk | r1, . . . , rm〉.
The area of a word w that represents the identity element in G, is the minimal integer l such
that there exist group elements f1, f2, . . . , fl in G such that

(1) w =F (X)

l!

j=1

r
εjfj
ij

, εj ∈ {±1}, ij ∈ {1, 2, . . . ,m}.

We denote by AreaP(w) the area of w with respect to the presentation P .

Definition 1.1. We define the Dehn function with respect to the finite presentation P ,
denoted by δP(n), as

δP(n) := max{AreaP(w) | |w|X ! n}.

To understand the asymptotic behaviour of the Dehn function, we introduce the following
partial order and equivalence relation on functions of natural numbers.

Definition 1.2. Let f, g : N → N be non-decreasing functions. We say f is asymptotically
bounded above by g, denoted by f " g, if there exists a constant C such that

f(n) ! Cg(Cn) + Cn+ C, ∀n ∈ N.
In addition, we say f is asymptotically equivalent to g , denoted by f ∼= g, if f " g and
g " f .

Gromov [Gro87] showed that the Dehn function of a finitely presented group does not
depend on the choice of the finite presentation up to equivalence. In fact, the Dehn function
is a quasi-isometry invariant. Thus we define the Dehn function of a finitely presented group
G to be the Dehn function of any its finitely presentations, denoted by δG.

A well-known result shows that the Dehn function of a finitely presented group charac-
terises the decidability of the word problem.
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Theorem 1.3 (Madlener-Otto [MO85]). Let G be a finitely presented group. Then the word
problem of G is decidable if and only if δG(n) is sub-recursive.

We refer [Bri02] for a detail survey of the Dehn function.

2. The centralized and abelian Dehn function

Again, let G be a finite presented group with presentation P = 〈X | R〉. Then G is
isomorphic to F (X)/N , where N is the normal closure of R in F (X). It is often much harder
to estimate the lower bound of the Dehn function. So instead of considering representations
of w that freely equal to w, we consider representations of (1) that equal to w modulo some
normal subgroups in the free group. Two candidates are [F,N ] and [N,N ]. When we modulo
[F,N ], we only count the net number of use of every relators, while in the case of [N,N ], we
are able to gather relators conjugated by the same element together.

Formally, the centralized area of a word w, named after the reason that we let all relators
be in the center, is the minimal integer l such that there exist i1, i2, . . . , im ∈ Z such that

w ≡
m!

j=1

r
ij
j mod [F,N ],

m"

j=1

|ij| = l.

Thus the centralized Dehn function with respect to the presentation P is defined to be

δcentP (n) := max{AreacentP (w) | |w|X ! n}.
The centralized Dehn function is independent from the finite presentation we choose

[BMS93]. Thus the centralized Dehn function δcentG (n) of a group G is well-defined.
We will still discuss the centralized Dehn function under the equivalence ∼=, as we will say

the function is linear, quadratic etc. But the centralized Dehn function is not a quasi-isometry
invariant. In particular, Baumslag, Miller, Short gave an examples of quasi-isometric groups
G and H (one has index 2 in the other) such that δcentG ≇ δcentH .

The centralized Dehn function gives the lower bound for the Dehn function by the defini-
tion, and thus it becomes a very useful tool for estimating the Dehn function from below.

The following results show that centralized Dehn function and Dehn function sometimes
agree.

Theorem 2.1 (Baumslag-Miller-Short [BMS93]). For every integer l > 0, there is a finitely
presented group Gl such that δcentGl

(n) ∼= δGl
(n) ∼= nl.

Using similar method, we have

Theorem 2.2 (Baumslag-Miller-Short [BMS93]). There is a metabelian polycyclic group G
of Hirsch length 3 such that δcentG (n) ∼= δG(n) ∼= 2n.

In connection with the centralized isoperimetric function δcentG it is useful to recall the
following exact sequence:

0 N ∩ [F, F ]/[N,F ] N/[N,F ] F/[F, F ] F/N [F, F ] 0

0 H2G (H1R)G = N/[N,F ] H1F H1G 0

This sequence is the usual five term exact sequence in the homology of groups associated
with the presentation 1 → N → F → G → 1. Since F/[F, F ] is a finitely generated free



VARIATIONS AND GENERALIZATIONS OF THE DEHN FUNCTION 3

abelian group, it follows that N/[N,F ] splits as a direct sum N/[N,F ] ∼= HG ⊕ Zk for some
k # 0. The H2G is the more interesting part since Zk makes only a linear contribution.

For finitely generated nilpotent groups, the centralized Dehn function is particularly useful.
R. Young showed that it can be realised by a distortion function of a central extension of G
by Z.

Theorem 2.3 (Young [You08]). If G is a finitely generated nilpotent group, A is a finitely
generated abelian group,

0 → A → H → G → 1

is a central extension of G, and k is the degree of distortion of A in H, then if k # 2 we
have δcentG (n) $ nk.

Conversely, if G is a finitely generated nilpotent group and δcentG (n) ∼= nk, then there exists
a central extension

0 → Z → H → G → 1

such that ∆H
Z
∼= nk.

And the distortion of an abelian subgroup in a nilpotent group can be computed by a
theorem of D. Osin [Osi01].

We now consider equation (1) modulo [N,N ]. Let G be a finitely presented group with a
finite presentation P = 〈X | R〉. We denote by N the normal closure of R in F (X). For a
word w that represents the identity, the minimal l such that

w ≡
l!

j=1

r
εjfj
ij

mod [N,N ], εj ∈ {±1}, ij ∈ {1, 2, . . . ,m}.

holds is the abelian area of w, denoted by AreaabP (w). Then the abelian Dehn function of G
with respect to the presentation P is

δabP (n) = max{AreaabP (w) | w =G 1, |w|X ! n}.
Unlike the centralized Dehn function, the abelian one is a quasi-isometry invariant.

Theorem 2.4 (Baumslag-Miller-Short [BMS93]). Let G be a finitely presented group. If H
is a group that is quasi-isometric to G, then H is finitely presented and δabG (n) ∼= δabH (n).

By definition, we immediately have δcentG (n) " δabG (n) " δG(n). Note that the abelian
Dehn function has a close connection to the relation module Nab = [N,N ]. If the structure
of Nab is well-understood, then the abelian Dehn function can be computed. For example,
the finitely generated torsion-free one-relator groups is known to have free relation module
of rank one. In fact, the relation module is free if and only if the group G have aspherical
presentation (i.e., the presentation 2-complex is aspherical). Applying this idea we have

Theorem 2.5 (Baumslag-Miller-Short [BMS93]). Suppose G is the amalgamated free product
of two finitely generated free group with a cyclic amalgamated subgroup generated by proper
powers in each fact, i.e., G has the following presentation

G = 〈a1, . . . , as, b1, . . . , bt | up = vq〉, u ∈ F (a1, . . . , as), v ∈ F (b1, . . . , bt), p, q # 2.

Then δG(n) ∼= δabG (n) ∼= n2.

This close relationship of the abelian Dehn function to the homology of G will enable us
to extent it to a much wider class of groups later.
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3. The averaged Dehn function

The Dehn function measures the extreme case of the complexity to decompose a word
represents the identity to a product of conjugates of relators. Gromov proposed a variation
of this concept: what the average complexity is, taken over all words represent the identity.
He claimed that this averaged Dehn function should be strictly asymptotically smaller than
the Dehn function.

Let G = 〈x1, . . . , xk〉. Suppose we have a probability distribution function on the set of
words (not necessarily reduced) that represent the identity. Then we can define the averaged
Dehn function as following

δavgG (n) = Epn(Area(w)) =
"

w

Area(w)p(w).

There are many ways to put a probability measure on the set of words that represent the
identity. The random walk is the most obvious choice (provided by the fact there are a lot
of work on random walks of groups). One way to do this is to consider a symmetric random
walk on the generator (including the identity e). That is, if our group G has a generating
set x1, x2, . . . , xk, the probability measure p is defined to be

p(g) =

#
1

2k+1
g = e or g = x±1

i ,

0 otherwise.

Though any probability measure with p(e) > 0 and p(x) = p(x−1) will serve the purpose.
We use p to construct random walk on the group where p(n)(x), the nth convolution power
of p, is the probability that an n-step random walk starting at e ends at x. We also define
p(n)(x, y) ≡ p(n)(x−1y), the probability of going from x to y in n steps and p(x, y) ≡ p(1)(x, y).

We normalize pn |g1g2...gn=e, which is nonzero, to a probability measure pn. Its support is
the set of all lazy words of length n which are the identity in G. The averaged Dehn function
is defined to be

δavgG (n) = Epn(Area(w)) =
"

w

Area(w)pn(w).

Another way to consider a symmetric random walk on the set X∪X−1, or equivalently put
a probability measure is to put an even distribution to all words w ∈ (X ∪X−1)∗ (possible
non-reduced) that w =G 1. For every positive integer n, we define the sets

BG(n) = {w ∈ (X ∪X−1)∗ | w =G 1, |w|X ! n}.

In this case, we define the averaged Dehn function as

δavgG (n) =

$
w∈BG(n) Areaw

|BG(n)|
.

Note that the pn we defined above is in fact the even distribution on the set

B′
G(n) = {w ∈ ({e} ∪X ∪X−1)∗ | w =G 1, |w|X ! n}.

It is unknown if the averaged Dehn function is invariant under quasi-isometry or even
change of generators.

Those following theorems support Gromov’s claim:
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Theorem 3.1 (Bogopolski-Ventura [BV08]). Let X = {x1, x2, . . . , xk}, and G = 〈X | R〉 be
a finite presentation of an abelian quotient of F (X). Then,

δavgG (n) = O(n(lnn)2).

Theorem 3.2 (Young [You08]). If G is a finitely generated nilpotent group with Dehn func-
tion δG(n) = O(nk), then if k > 2, its averaged Dehn function for any presentation satisfies
δavgG (n) = O(nk/2), and if k = 2, δavgG (n) = O(n lnn).

Note that the above theorem does not include the case that k = 1, where G is virtually Z.
One might argue that using the random walk method, we have to count a short word

that represents the identity many times, which makes the sub-asymptotical behaviour less
impressive. We can consider a uniform distribution on the set

Wn = {w | w ∈ F (X), w =G 1, |w|X ! n}.
Thus we can define the averaged Dehn function as

δavgG (n) =

$
w∈Wn

Area(w)

|Wn|
.

But in general, the set Wn is less understood. For cases like one relator groups and the
free abelian group of rank 2, it is possible to estimate the averaged Dehn function for this
probability model.

M. Sapir induced another notion called the random Dehn function. Let G be a finitely
presented group and and T (G) a geodesic combing (i.e. for every element g ∈ G, we associate
it with a unique geodesic γg from e to g). We define the area of a word w ∈ (X ∪X−1)∗, not
necessarily represents the identity, to be

Area(w) = Area(wγ−1
w ).

Note that this area agrees with our previous definition on the set of words represent the
identity.

A function f : N → N is random isoperimetric function for G if

|{w ∈ (X ∪X−1)∗ | |w|X∗ ! n,Area(w) # f(n)}|
|w ∈ (X ∪X−1)∗ | |w|X∗ ! n}|

The random Dehn function for G is the smallest random isoperimetric function, denoted by
δrdG (n). It depends on the choices of the presentation and geodesic combing. M. Sapir claimed
that for any finite presentation of an abelian group G and for any combing δabG (n) " n log n.

4. The homological and homotopical Dehn function

The standard Dehn function reflects isoperimetric property of the spaces (we consider
simply connected Riemannian manifolds or simplicial complexes) on which the group acts
geometrically [BP94]. One immediate way to generalise it is to extend this idea to higher
dimensions. But the standard definition of Dehn function does not involving higher dimen-
sional structure. Thus we have to give an equivalent definition of the Dehn function that
has potential to generalise to a higher definition.

First let us recall the definition of finiteness properties of groups. For a group G, a
classifying space K(G, 1) is a connected space such that π(K(G, 1)) = G and its universal
cover is contractible.

Definition 4.1. A group G is said to be
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(1) of type Fn for a natural number n if its classifying space K(G, 1) has finite n-skeleton,
or equivalently G acts geometrically on some (k − 1)-connected CW-complex;

(2) of type F∞ if it is of type Fn for every n ∈ N;
(3) of type F if K(G, 1) is finite.

It is time to give a new and more geometric definition of the Dehn function. In essence,
we now fill a manifold just as we fill a loop in Cayley 2-complex and we will properly define
what is the meaning of “area ( or volume in higher dimension)” for those fillings. But we
will only focus on fill nicer manifolds. This leads to us to define the admissible maps as
following.

Definition 4.2. Let W be a compact k-manifold and X a CW-complex. An admissible map
from W to X is a map f : W → X(k) such that f−1(X(k) \ X(k−1)) is a disjoint union of
open k-dimensional balls in W , each mapped homeomorphically to a k-cell of X. We define
the vol f of f as the number of these balls.

Admissible maps are abundant, in the sense that every continuous map is homotopic to
an admissible map [BBFS09].

Let X be a k-connected (i.e. πi(X) = 0 for 1 ! i ! k) CW-complex and α : Sk → X be
an admissible map, then the filling volume of α is

FVol
(k)
X (α) = inf

β
{vol β | β : Dk+1 → X, β |Sk= α, β is admissible}.

Then the k-dimensional Dehn function of X is defined to be

δ
(k)
X (n) = sup

α
FVol

(k)
X (α),

where α ranges all admissible maps satisfying volα ! n.
Let G be a finitely presented group of type Fk+1 and X is a K(G, 1) space. Then G acts

on the universal cover X̃ geometrically (that is, coboundedly and properly-discontinuously).
We define the k-dimensional homotopical Dehn function of group G to be the Dehn function
of the space X. As Gromov pointed out and Bridson proved, the homotopical Dehn function
is equivalent to the Dehn function [BP94] when k = 1. Thus, we usually omit the superscript

and denote δG(n) = δ
(1)
G (n).The following proposition shows that this notion of homotopical

Dehn function is well-defined and it is a quasi-isometry invariant.

Proposition 4.3 (Alonso-Wang-Pride [AWP99]). LetG be a group of type Fk+1, then δ
(i)
G (n)

for 1 ! i ! k is well-defined. Moreover, if H is quasi-isometric to G then H is also of type

Fk+1 and δ
(i)
G (n) ∼= δ

(i)
H (n) for 1 ! i ! k.

When k = 2, the second order Dehn function was studied extensively by many math-
ematicians. Bogley and Burton shows that each hyperbolic group has linear second order
Dehn function [ABB+98], though the converse is false since any group with a finite aspherical
presentation has linear second order Dehn function (e.g. Z2). The synchronously automatic
groups and semihyperbolic groups have quadratically bounded Dehn functions while the
asynchronously automatic groups have exponentially bound Dehn functions. Moreover, if G

is synchronously combable then δ
(2)
G (n) ! 2n [Wan96]. Note that synchronously combable

groups, semihyperbolic groups have quadratically bounded ordinary Dehn function and asyn-
chronously automatic groups as well as asynchronously combable groups have exponentially
bounded Dehn function [ECH+92]. There are also results investigating the behaviour of the
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second order Dehn functions under taking direct products, amalgamated free products and
HNN-extensions [WP99], [WB09]. Those results show the second order Dehn function shares
a lot of similarities with the Dehn function.

The real differences start to reveal as Wang showed that δZk(n) ∼= n3/2 when k # 3 [Wan02].
This falls into the famous isoperimetric gap of the Dehn function, suggesting the isoperimetric
spectrum should be different for second order Dehn function and presumably for higher
dimensional homotopical Dehn function, which is indeed the case. The kth isoperimetric
spectrum is defined to be

IP(k) = {α | there exists G of type Fk+1 such that δ
(k)
G

∼= nα}.

The higher Dimensional Dehn functions of snowflakes groups give the following result.

Theorem 4.4 (Brady-Bridson-Forester-Shankar[BBFS09]). The closure of IP(k) contains
{1} ∪ [ k

k+1
,∞).

The full picture of isoperimetric spectrum is still unknown even for k = 2. A. Mukherjee
showed that the second order Dehn function of Z2 ⋊ϕ Z is bounded by n lnn when no
eigenvalues of ϕ is ±1 [Muk16] though no lower bound is obtained. Also it is unclear if
groups constructed by Birget, Rips, Sapir and later by Ol’shanskiy will give a finer detail of
IP(k) [BOsRS02].

Another important difference is that δ
(2)
G (x) is always sub-recursive [Pap00], no matter

the decidability of the word problem (D. Collins and C. Miller gave an example of group of
type F with undecidable word problem and aspherical presentation [CM99]), while R. Young
constructed a group with non-subrecursive k-dimensional Dehn function [You11] for k # 3.
It will be interesting to understand the situation for higher dimensional Dehn functions.

Next we define the homological version of the Dehn function. One might notice that the
abelian Dehn function already has its connection to homology. We will discuss the connection
later. First let us recall the definition of algebraic finiteness properties.

Definition 4.5. A group G is said to be

(1) of type FPn if there exists an exact sequence of the form

Pn → Pn−1 → Pn−2 → · · · → P1 → P0 → Z → 0,

where Pi are finitely generated projective ZG-modules, or equivalently G acts geo-
metrically and cellularly on some homologically (n− 1)-connected space;

(2) of type FP∞ if it is of type FPn for every n ∈ N;
(3) of type FP if there exists an exact sequence of the form

0 → Pn → Pn−1 → Pn−2 → · · · → P1 → P0 → Z → 0,

where Pi are finitely generated projective ZG-modules.

Note that the set of groups of type FP2 is strictly larger than the set of finitely presented
groups (equivalently, groups of type F2) [BB97]. And in fact, the set of groups of type FP2

is uncountable [Lea18].
For homological version of the Dehn function, we would like to fill k-cycles by (k + 1)-

chains. This naturally requires us to find a space on which G acts geometrically and cellularly
and has trivial kth homology group. We start with the case when k = 1.
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Let X be a CW-complex such that H1(X) = 0. Let γ ∈ Z1(X) be a 1-cycle, then there
exists a 2-chain c ∈ C2(X) of the form c =

$
i aiσi, where ai ∈ Z and σi are 2-cells, such

that γ = ∂c. The homological filling area of γ is

HAreaX(γ) = min{‖c‖1 | ∂c = γ},
where ‖ · ‖1 is the l1-norm. Then the homological filling function of X is

FAX(n) = sup{HAreaX(γ) | γ ∈ Z1(X), ‖γ‖1 ! n}.
One can also extend the definition of the abelian Dehn function as follows:

δabX (n) = sup{HAreaX(γ) | γ is a loop, ‖γ‖1 ! n}.
By this definition, we immediately have δabX (n) " FAX(n).

As previous discussion, for a group G we can define its second order homological Dehn
function as the homological filling function of a space X that G acts geometrically and
cellularly. The existence of such space is provided by the following lemma:

Lemma 4.6 (Brady-Kropholler-Soroko [BKS21]). Let G be a group of type FP2, then there
exists a CW-complex X with H1(X) = 0 such that G acts on it freely, cellularly, cocompactly
and has one orbit of vertices.

Therefore we define the second order homological Dehn function and abelian Dehn function
respectively as

FAG(n) := FAX(n), and δabG (n) := δabX (n).

Though the construction of X depends on the presentation, as Brady, Kropholler and Soroko
showed, both Dehn functions are independent of the choice of presentations and are quasi-
isometry invariant [BKS21].

Recall that a function f : N → [o,∞) is super-additive if f(m + n) # f(m) + f(n) for
m,n ∈ N. For a function f : N → [o,∞), its super-additive closure, denoted by f̄ , is defined
to be the smallest super-additive function that bounds above f . Or equivalently,

f̄(n) = max{f(n1) + · · ·+ f(nr) | r # 1, ni ∈ N,
r"

i=1

ni = n}.

Super-additivity was first recognized as a useful property in connection with Dehn func-
tions by S. Brick [Bri93] who called it “subnegativity”, and it has since then been studied by
V. Guba and M. Sapir [GS99]. For example, Dehn functions of free products behaves nicely
if they are supper-additive, and the super-additivity also relates to the whole picture of the
isoperimetric spectrum of the Dehn function [BOsRS02]. It is conjectured by Guba and
Sapir that the Dehn function of a finitely presented group is equivalent to a super-additive
function otherwise G and G ∗Z will have different Dehn function up to ∼=. The homological
version of this conjecture has already been proved.

Theorem 4.7 (Brady-Kropholler-Soroko [BKS21]). Every second order homological Dehn
function is equivalent to a super-additive function.

As for finitely presented groups, their second order homological Dehn function is in fact
bounded above the super-additive closure of their abelian Dehn function, that is, for a finitely
presented group G, FAG(n) " δ̄abG (n) [BKS21]. It was also shown earlier by Gersten that
FAG(n) ! δ̄G(n) [Ger92].
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The relation between the second order Dehn function and Dehn function is still unknown.
It is conjectured that the second order homological Dehn function is bounded above by the
Dehn function. The following result shows that they can be different.

Theorem 4.8 (Abrams-Brady-Dani-Young [ABDY13]). Let f(n) be 2n or nd for sufficiently
large d, then there is a finitely presented group G such that

FAG(n) " n5, δG(n) $ δG(n).

It also follows that the abelian Dehn function and Dehn function can be different.
Still, the second order Dehn function resembles many properties of the Dehn function.

First, it is a quasi-isometry invariant [BKS21]. Secondly, it also characterises the hyperbolic
groups as follows

Theorem 4.9 (Gersten [Ger92]). A finitely presented group is hyperbolic if and only if its
second order homological Dehn function is linear.

The trade-off, as one might expect, of generalising the Dehn function to a larger class of
groups is that we no longer have connections between the homological Dehn function and
complexity of the word problem. It is well-known that for a finitely presented group G
a sub-recursive Dehn function δG(n) implies the solvability of the word problem of G and
vice versa [MO85]. This nice property fails for homological Dehn function, as the following
theorem shows.

Theorem 4.10 (Brady-Kropholler-Soroko [BKS21]). There exists a group G of type FP2

with FAG(n) ∼= n4 which has unsolvable word problem.

But for a smaller class of groups, the classical decidability result is true to some extent.
Let F0 be the set of the trivial group. The set Fn+1 is inductively defined as the set of
fundamental groups of a finite graph of Fn vertex groups and finitely generated free edge
groups. And the homological Dehn function with coefficient R is defined as one expected.
We have FAG(n) " FAG,R(n) [Ger92].

Theorem 4.11 (Gersten [Ger92]). If G ∈ Fn, then G has a decidable word problem if and
only if FAG,R(n) is sub-recursive.

For k # 2, the definition of kth order homological Dehn function is straightforward. Let
X be a homologically k-connected CW-complex and α a k-cycle. The homological filling
volume of α is

HVol
(k+1)
X (α) := inf{‖β‖1 | β ∈ Ck+1(X), ∂β = α}.

Thus the kth filling volume function of X is

FV
(k+1)
X (n) = sup

‖α‖1!n

HVolX(α).

Let G be a group of type FPk+1 that acts geometrically on a homologically k-connected

complexX. We define the kth order homological Dehn function for groupG to be FV
(k+1)
G (n) :=

FV
(k+1)
X (n). If X is also k-connected (or G is of type Fk+1), by Hurewicz theorem, one can

replace cycles and chains by spheres and balls when k # 2. Thus it is not hard to show that

δ
(2)
X " FV

(k+1)
X for k = 2 and δ

(k)
X (n) ∼= FV

(k+1)
X for k # 3. Consequently, if k # 3 and G is a

group which acts geometrically on a k-connected complex, previous discussions imply that

δ
(k)
G

∼= FV
(k+1)
G (n). R. Young showed that the bound can be strict for k = 2, that is,
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Theorem 4.12 (Young [You11]). There exists a finitely presented group G such that δ
(2)
G ∕∼=

FV
(3)
G (n)

The group can be take as direct product of two copies of BS(1, 2). Then δ
(2)
G (n) " n2 and

FV
(3)
G $ 2

√
n.

In addition to this, Young also shows that

Theorem 4.13 (Young [You11]). There exist groups Gk for k # 2 such that FV
(k)
Gk

is not
sub-recursive.

Thus there is no general relation between the decidability of the word problem and higher
order homological Dehn function.

Another interesting topic is the homological isoperimetric spectrum, which can be defined
as following.

HIP(k+1) = {nα | there exists a group G such that FV
(k+1)
G

∼= nα}.

Following the result of Theorem 4.4, the normal closure HIP
(k+1)

contains {1} ∪ [ k
k+1

,∞)
for k # 3. For the case k = 1, it has been shown by N. Brady, R. Kropholler and I. Soroko
that the HIP(2) is dense in {1} ∪ [4,∞). It is very interesting to understand more of the set

HIP(2). The followings are two natural questions to ask

Question 4.14. Is the set (1, 2) ∩ HIP(2) empty? In general, is the set (1, k
k+1

) ∩ HIP(k+1)

empty?

For HIP(2), one could hope that the following might be true.

Question 4.15. Do we have an equality HIP(2) = {1} ∪ [2,∞)?

5. The Dehn function for infinite presentations

Let a finitely generated group G be defined by a presentation in terms of generators and
defining relators

G = 〈X | R〉,
where X = {x1, x2, . . . , xk} and R is a set of defining relators which are nonempty cyclically
reduced words over the alphabet X ∪X−1. The subset R is termed decidable (or recursive)
if there is an algorithm to decide whether a given word over X ∪X−1 belongs to R.

We then define the presentation complex for the group G with respect to the presentation
〈X,R〉. Let K(X,R) be a 2-complex associated with the presentation so that K(X,R) has
a single 0-cell, oriented 1-cells of K(X,R) are in bijextive correspondence with letters of
X ∪ X−1, and 2-cells of K(X,R) are in bijective correspondence with the words of R that
naturally determine the attaching maps of the 2-cells. It is easy to see that the fundamental
group π1(K(X,R)) is isomorphic to G.

By a van Kampen diagram over the presentation 〈X,R〉 we mean a planar, finite, connected
and simplt connected 2-complex∆ which is equipped with a continuous cellular map µ : ∆ →
K(X,R) whose restriction on every cell of ∆ is a homeomorphism. By an edge of ∆ we mean
the closure of a 1-cell. If e is an oriented edge of ∆ corresponds to a letter x ∈ X∪X−1, then
a is termed the label of e and is denoted ϕ(e). Note ϕ(e−1) = ϕ(e)−1, there e−1 denotes the
edge with opposite orientation. If p = e1 . . . em is a path in ∆, where e1, . . . , em are oriented
edges of ∆, then we set ϕ(p) = ϕ(e1) . . .ϕ(em). The well-known van Kampen lemma states
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that a word w belongs to 〈〈R〉〉 if and only if there exists a van Kampen diagram ∆ over
〈X | R〉 whose boundary path ∂∆ is labeled by the word w. Let ∆(j) be the set of j-cells
in ∆, j = {0, 1, 2}.

Let w ∈ 〈〈R〉〉 and j ∈ {0, 1, 2}. Define Lj(w) to be the minimal number of j-cells in a
van Kampen diagram ∆ over 〈X,R〉 whose boundary ∂∆ is labeled by the cyclic word w,
that is

Lj(w) = min{|∆(j)| | ϕ(∂∆) =F (X) w.}
Then we deine

δj(n) = max{Lj(w) | w ∈ 〈〈R〉〉, |w|X ! n}.
If j = 2 and R is finite, δ2(n) is the ordinary Dehn function. For j = 0, 1, 2, δj is referred
to as the Dehn j-function of the specific presentation. It is obvious from the definition that
such functions depends on the choice of presentation. The Dehn 2-function of any finitely
generated group could be equal to 1 if we choose R to be all words equal to the identity.

When j = 1, the Dehn 1-function is actually equivalent to the derivation work function
introduced by J. Birget. It measures the work of a derivation converting a word to the
identity. More details can be found in [Bir98] and [Vac19].

When R is finite, all Dehn j-functions are non-distinguishable under ∼=.

Theorem 5.1 (Grigorchuk-Ivanov [GI09]). If G is finitely presented, equipped with the finite
presentation 〈X | R〉, then all Dehn j-functions are equivalent under ∼= for j = 0, 1, 2.

Some immediate results follow the definition.

Theorem 5.2 (Grigorchuk-Ivanov [GI09]). Let 〈X | R〉 be a presentation of G such that
R is decidable. Then the word problem for G is solvable if and only if the Dehn 1-function
δ1,G(n) is computable.

The statement is not true for the Dehn 2-function. According to [GI09, Example 2.4],
there is a finite generated infinite presented group with the set of relators being decidable
that has undecidable word problem but a recursive Dehn 2-function.

Theorem 5.3 (Grigorchuk-Ivanov [GI09]). Let a group G = 〈x1, . . . , xk〉 be generated by
elements x1, . . . , xk. Then the word problem for G is in NP if and only if there exists
a presentation 〈x1, . . . , xk | R〉 for G such that its Dehn 1-function δ1 is bounded by a
polynomial and the problem to decide whether a word w belongs to R is in NP.

While there is no δ2 for finite presentations between n and n2 [Ol’92], this is not the case
for infinite presentations.

Theorem 5.4 (Grigorchuk-Ivanov [GI09]). Let m # 2, l # 248 and l be either odd or divisible
by 29. Let B := B(m, l) be the free Burnside group equipped with presentation given by
Ol’shanskiy (refer to [Ol’91]). Then the Dehn 1-function δ1,B(n) is bounded from above by
n19/12. In addition, δ0,B(n) ! 2x19/12 and f2,B ! 2

l
x19/12.

As a consequence of the above theorem, we have

Corollary 5.5. Let m # 2, l # 248 and l be either odd or divisible by 29. Then the word and
conjugacy problems for the free Burnside group B(m, l) are in NP.

In an ongoing work by Osin and Rybak, they present a different way to generalise the
Dehn function to finitely generated infinite presented groups.
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Let G = 〈X〉 be a finitely generated group. We define

Sk = {w ∈ F (X) | |w|X ! k, w =G 1}
and

Gk = 〈X | Sk〉.
Then G is the direct limit of Gks, i.e., G = limk→∞ Gk. In addition, let Π = {(k,m, n) ∈
N× N× N | m # k}.

The isoperimetric spectrum fG,X : Π → N of a finitely generated group G is

fG(k,m, n) = max{AreaSm(w) | w ∈ 〈〈Sk〉〉, |w|X ! n}.
We introduce an analogue of ∼= to this multivariable function. For functions f, g : N×N×

N → N,

f ≼ g if there exists C > 0 such that f(k, Cm, n) ! Cg(Ck,m,Cn) + C
n

m
+ C, ∀k,m, n.

And f ∼ g if f ≼ g and g ≼ f .

Theorem 5.6 (Osin-Rybak). Let G,H be finitely generated groups such that G is quasi-
isomorphic to H. Then

fG(k,m, n) ∼ fH(k,m, n).

Note that if G is finitely presented, Gk
∼= G for all k greater than a certain number. Thus

the asymptotic behaviour of the isoperimetric spectrum does not depend on k.

Theorem 5.7 (Osin-Rybak). Let G be a finitely presented group, then

δG(n)

δG(m)
≼ fG,X(k,m, n) ≼ δG(n)

m
.

It follows that

Corollary 5.8. (1) If G is hyperbolic, then fG,X(k,m, n) ∼ n
m
.

(2) If G is semi-hyperbolic, then fG,X(k,m, n) ∼ n2

m2 .

Definition 5.9. The isoperimetric spectrum is strongly linear if f ∼ n
m

and is weakly linear
if the constant C depends on k.

We have

Theorem 5.10 (Osin-Rybak). For the following groups, the isoperimetric spectrum is strongly
linear.

(a) K ≀ Z, |K| < ∞;
(b) finitely generated infinite presented C ′(1/6) groups;
(c) free burnside groups B(m,n) for n > 1010 odd.

The last generalization of Dehn function involving infinitely presented group is the verbal
Dehn function introduced by Ol’shanskiy and Sapir. Let V be a variety that is defined
by a finite set of identities, then it can be defined by a single law v = 1 for some word
v = v(x1, x2, . . . , xk) from the (absolute) free group F (X1, X2, . . . , Xn, . . . ) of infinite rank.
Let V ! F be the verbal subgroup consisting of all words vanishing in all groups of the
variety V . THen w ∈ V can be written as the product

N!

i=1

u−1
i v(Xi1, Xi2, . . . , Xim)

±1ui.
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A function fV : N → N is the verbal isoperimetric function of the word v if for any word
w ∈ V , there exists a representation as above such that

$
ij |Xij| ! fV (|w|). The smallest

fV is called the verbal Dehn function of V , denoted by δverbV . It can be shown that δverbV does
not depends on the choice of v under the equivalence ∼=.

Proposition 5.11 ([OS00]). δverbV is superadditive.

The verbal Dehn function is useful when embedding relative free groups into finitely pre-
sented groups.

Theorem 5.12 (Olshankiy-Sapir [OS00]). Let f(n) be the verbal isoperimetric function of
a group variety V defined by v = 1. Then the relative free group Fm(V) of rank m in the
variety V can be isomorphically embedded into a finitely presented group H = H(v,m) with
an isoperimetric function n2f(n2)2.

One example is the Burnside variety Bn for n sufficiently large. In this case, f(s) = s4 is
a verbal isoperimetric function [Ol’91]. Thus free Burnside group for n sufficiently large can
be embedded into a finitely presented group of Dehn function bounded above by n18. In an
unpublished work of R.Mikhalov, the verbal isoperimetric function can be chose to be n1+ε(n)

where ε(n) → 0 as n → ∞. Thus the result can be improved to n8+ε(n). Though recently,
F. Wagner improved the embedding such that Free Burnside groups (for n sufficiently large)
can be embedded into groups with quadratic Dehn function [Wag20].

For solvable varieties, by the work of Kleiman, there exists a solvable variety with non-
recursive verbal Dehn function [Kle82].

6. Conjugacy Length Function

For the conjugacy problem, we consider a different function, the conjugator length func-
tion, since we are more interested in the length of the conjugator rather than the area of the
annular diagram.

Let G be a group with a generating set {x1, x2, . . . , xk}. If g and h are conjugate elements
of G, the conjugacy distance from g to h is

cd(g, h) = min{|f |X | f ∈ G, h = gf}.
Then we define the conjugacy length function to be

CLF(n) = max{cd(g, h) | g, h ∈ G are conjugate and |g|X + |f |X ! n}.
It is not hard to see that the conjugacy problem of a group is solvable if and only if its

conjugacy length function is recursive. Note that the solvability of the conjugacy problem
does not pass to finite index subgroups or to finite extensions [CM77]. Moreover, CLF is
dependent to the choice of the generating set but if CLF has a polynomial growth then the
degree of the polynomial is independent of S. So CLF is not a quasi-isometry invariant.

There are many works in the literature giving various upper bounds for the conjugacy
length function in certain classes of groups. Here we list a few of them.

Theorem 6.1. (1) Hyperbolic groups have a linear upper bound [BH99].
(2) CAT(0) groups have an exponential upper bound for conjugacy length [BH99].
(3) Free solvable groups have a cubic upper bound for CLF [Sal15].
(4) Mapping class groups have a linear upper bound [Tao13].
(5) Right-angled Artin groups have a linear upper bound [CGW09].
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(6) Thompson’s group F has a quadratic CLF [BM21].
(7) The wreath product of a finite abelian group A and a finitely generated abelian group

of torsion-free rank k > 0 has exponential CLF if k = 1 and has CLF between 2n

and 2n
k
if k > 1 [FP21].

In an upcoming work of Bridson, Riley and Sale, they give examples with CLF equivalent
arbitrary degree of polynomials and examples with CLF equivalent to 2n.
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